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Let M be a two-parameter continuous naartingajé bounded in L2 and null on the axes. The positive

submartingale M 2 has the following Doob-Meyer decomposition
]
M2 =2 [M,dM,+2My+<M, >4 <M > ~M),, ,
R,

(cf. [2), (3), [8]). where R, denotes the rectangle [0,5 ]x[0,t] ; <M,.>, (resp. <M, >;) is the qua-
dratic variation ofﬁxc one-parameter martingale {M,, 120]) (resp. {'M . §20), and Misa martingale
obtained in the following way: For each z€ R2, consider an increasing sequence of grids, {p", n21),
of T =R, whose mesh tends to zero, then [t?z is the L I-limit of the sequence
Sin )M (5;41,6;)-M (5;.8)IM (s Fia)=M(s;.1)]
The purpose of this paper is to relate the measures induced by the quadratic variations
Ml , [ﬂ],, » <M;.>, and <M, >, in terms of the "absolute continuity” property. Since we are

dealing with random measures, different definitions are possible:
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1. Introduction / !
Let M be a two-parameter continuous martingale bounded in Lf and null on the axes. The positive

hos o
submartingale M 5 has the-felowing Doob-Meyer decomposition ,

M2=2 [ M,aM,+2M, +<M, > <M, >-(M],, ,
R, :
(cf. [2], {3), (8]), where R denotes the-rectangle [0,5]x[0.2]; <M¢.>, (resp. <M, >,) is the qua-
dratic variation of the}ne parametcr martingale {M,,, £20} (resp. (Mg, 520), and Misa martingale

obtained Ethe following way: For each z € R2, consider an increasing sequence of grids, {p", n21},

of T =R, whose mesh tends to zero, then M , is the L !-limit of the sequence

\ z(n)[M(s;+l L ) M(S, ,t )][M(s( ’tl"’l) M(S J )]

ccrfo

\)The purpose of this paper is to relate the measures mduced by the quadxauc variations

?/

<
M, [M],, » <M;.>, and <M, >, in terms of the "absolute continuity” property. Since we are

! : P
dealing with random measures, different definitions are possible: ! G ye ,,/,;. B i | %

’

g r ;
’r}_’u 4.: R 4'?9 ) J/J\M’/*

Definition 1.1. Given two random finite measures |1,V defined on some measurable space (S ,X), W is said
1o be absolutely continuous with respect to V, a.s. (and we will write <<V, as.) if, for any

wéV, P (N)=0, the following property holds:

If A € Z is such that v(w )(A )=0, then also p(w )(4 )=0.

Definition 1.2. Let |t and V be as in the preceding definition. |l is said to be weakly absolutely continuous
with respect to v if, forany A€ L, P{w, v(iw)A)=0, p(w A )=0}=0.
Comparing these two definitions, we easily realize that the first one requires a stronger property, but
it seems to be the more "natural” in view of applications, and will be mainly considered along the paper.
The contents of the paper are roughly as follows. Section 2 is devoted to preliminaries on two-

parameter processes. In particular we introduce the measure [M ] % [M ] which gives an exact meaning to

the expression J (M]g,4+<[M]4qz (this turns out to be a special case of generalized exterior products

introduced by Wong and Zakai in [14]). The measure [AZ] can also be viewed as an exterior product of

this type and a probabilistic proof of this fact is given in Proposition 2.3. Section 3 relates the measures

T yee J

]7/»-" bR

m s e— ~ = e e e o = —_ -
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induced by M on ventical or horizontal lines. It is shown that in general (M ], , <K <M _,>,. We
have not been able to prove that in general [M ] ast> <M ., >, ; we believe it is true and give partial
results in this direction. In section 4 we compare the random measures [M ],[A?] and [M]1x[M]. Itis
pointed out that in general [M ]<K [ICI'], M]k [M]x[M], [AT!]« [M]. Absolute continuity results
are derived in this section under additional conditions. We do not know if [M]<<[M ] % [M ] holds in

general, we conjecture that it holds and derive partial results in this direction.

In section 5 we apply the results of the previous section to the problem of local time for two parame-
ter martingales. In fact, one of the motivations of our problem has been the study of local time for two-
parameter continuous martingales. In the one-parameter case the local time of martingales, L (x,t), (and
more general, for semimartingales X ) is defined by an extended version of Ito’s formula for convex func-
tions. It is a local time with respect to the quadratic variation <X >, in the sense that, for every

f : R>R bounded and Borel it satisfies the "density of occupation” formula

t
[FOOL G = [f X )d<X >, , as.
R o

In the two-parameter case this method leads to a local time with respect to [A}] (see [9]). The result
seems to be rather surprising, since in comparison with the one-parameter case we expect that the measure
1“ [M ] should play a role. It follows from the results of the previous sections that [M ] alone or [A:i] alone

are not sufficient to carry the local time and, therefore, a measure like [M ]+[A7] may be more suitable for

this purpose.

2. Preliminaries and Notation.

The parameter space is T=[0,1]2 endowed with the partial ordering (5 ,¢{)S(5 2,2 5) if and only if
§1S5q, 1S5 (5101)<(57,t) means 51 <S;and £)<f,. If f isamap from T to R, the increment
of f on a rectangle (2;,25)={z€T, 2,<z525}, 2;=(s.8)), 2,=(Sty) s

F(@rza) =f 2)=f (s18)-f (20 )+f (0.

Let p be a grid of T given by
p=((s;t;)eT, i=0,...,p, j=0,...,q, O=50<s,< " <5, <], O=to<t < -+ <ty <l}.

For any (s; ;)€ P we define

— e e - . . o L e P A A af T AR e P+ =
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. Ay=(s;.5;41]%(t 2 01)s AY=(5:,514]%(0,1;], A,%:(O,s,-]x(tj,zj b

ﬁ with the convention $, 4y =24, = 1.

’

NP

2Lz’ z=(s,2).

respectively. If Mem?2, M is sad to be of path

.
e

two-parameter martingale y .

martingales (see [7]).

y IP= (. )eN? | (s.8)ep”, (5;.8))<z).

Proof. Consider the following decomposition:

of T whose norm tends to zero, and for any

Let (Q,F,P ) be a complete probability space, and (¥, ), ¢ 7 an increasing family of sub O-fields
of ¥ satisfying the usual conditions (F1) to (F4) of (2]. We recall that if M={M,,zeT} is a real
. valued integrable and F , -adapted process, M is a martingale if for any z<z’, E{M, | F,]=M,. M is

a strong martingale if M vanishes on the axes, and E {M((z,z])| F{VF,)=0, for each

Let m? be the class of two-parameter continuous martingales bounded in L? and null on the axes.
Denote by M., and M. the one-parameter martingales {M,,, F¢1, 20} and {M,,, F,,, 20}
independent
<M., >, =<M,>, =[M]g (cf. (2], (13]). Here, and throughout the paper, <X > will denote the

quadratic variation of a one-parameter martingale X , while [y ] will refer to the quadratic variation of a
The class of strong martingales on mc2 is strictly included in the class of path independent variation

All constants will be denoted by C , although they may change from one expression to another.

In order to state the results of this section we consider an increasing sequence of grids {p”, n21}

zeT

Lemma 2.1.- Let F: R25R be a continuous distribution function. Then lim Y F (A‘-} YF (A,%)
el

exists and defines a continuous and increasing function F % F (see Lemma 2.6 of [9)).




2
[F(z)12=[ ) F(A.-,-)}
G.jel}

= ¥ : 20F (5;.8))F (A YHF (A )F (ADYHF (8;)F (AR HF (ADF (AF )+ %F @) .
el
Let n —os, then by the continuity of F we obtain
T F(A)F (A} Ssup (F (s;41,8)~F (5,1 )F (z) > 0,
G.el ! o
and analogously 3, F (A;;)F (A%) = 0.
G.J)el; no=

Ontheotherhand Y, F(A,-j)2 Ssup F (A;;)F (z) — 0. Therefore,
(l.])E’: (Y] n—yoo
lim ¥ F@AHF@AY=1Fe-[F@F@a) .
o= e 2 R,

This limit defines a continuous function F # F . It is obvious that for any rectangle A with sides

O

If F and G are two continuous distribution functions on R 2, F % G can be defined by polariza-

parallel to the axes, (F % F }(A)20.

tion,
GivenMe mcz, there exist a continuous and increasing process {{M],, z€T } such that

limsup E{! ¥ M(;)*~[M],1}=0.

n-—yee 2 (IJ)EI,-

(See [2], {8]). Therefore, by Lemma 2.1 we can associate to M a continuous measure [M ] % [M]. In

Section 4 we will compare this measure with the quadratic variations associated with M .

Lemma 2.2. Let {M; F', i=0,...,m, te[0,1]} be a collection of one parameter martingales,
bounded in L , for some p 22, such that M?=0, forany i =0, . . . ,m. Suppose that t =M is a.s. con-
tinuous for every i =0, . . ., m. Then there exists a constant Cp such tha
m pi2 m
E| S sup IMH1?|  SC,EIT(MM)IP? .
i=0 0851 i=0

i m m
Furthermore if ZM]-I is a martingale sequence in i then E | z(M,‘l)zl"’2 SC,E| ZMil L8
j=0 i=0 i=0
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Proof. Let {A,, t&[0,1]} be the continuous, increasing and F* -adapted process defined by

Z sup IM;* 12,
i=0 OsTst

The potential Z, associated with A, is computed as follows:
Z,=E[A-4, | F]

Z[ossup I M;¥12- Sup IM* |2]/7‘}
A"O

ss[z Sup M, Y121 F .
i=0 $<Tsl

18))

By Doob’s maximal inequality applied to the martingales ((M;")1g, F*,1e[t,1]}),

m
Fef, i=0,...,m, (1) isbounded by m,=C, E[Y IM;' 12/ F'], where {m, ; F*, te[0,1])

_—
.

i=0
is a martingale. By Garsia-Neveu's inequality
’ m
4 E(AI)P’ZSCPE(ml)”Q:CpE[EO IMI2P2 @
i

which is the first result of the lemma. Burkholder’s inequality applied to the one-parameter discrete mar-

i
tingale 3° M jl, yields the second part of the lemma.
1 j=1

Note that the first part of this lemma is a slight generalization of the Doob maximal inequality for one-
parameter vecior valued martingales.

Proposition 2.3. LetM e mc4. The following convergence holds:

HmE(l X (M@GMAH <M, >, <M > )<M >, -<M . >:)]}

. RS (el
=0, foranyzeT.
ﬁ Proof. To simplify the notations we take z =(1,1). Let
m2n, p"=((s;.))eT, i=0,...,p,, j=0,...,q,), p"=((0;7;)eT, i’=0,...,p,, j'=0,....q,).

For every i=0,...,p, (esp. j=0,...,q,) define [;={i’,0;€[s;.5,,)} (resp.

Ji=lj' tjeltjtj D)), Given  poins  u'=(0;.t;), u”=(s;,t;’) we denote by

A} j=(0;,0;411x(0,t; ), and AZ=(0,5;1X(T;,%-,,]. Then

o -
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E( IZ[M )M (A,?.)‘-’-(<M,._.>,,d-<M,.,,>,_)(<M.,.>,l,d—<M.,j )

—E{Iz[M(A LM a3 lim ( T M@AZPH( T M@AF I

3)
p 2% jed; i‘el;
< sup E{ 1T M@K z M@AZN~( T MQAZAD(T MBI
ij i'el; Jj'el; j'ed; i'el;

For any i'el;, {’eJ;,0p>s5;,Tj>t; we  define Z,-}:j = (5;,0;-}x(0.;],  and
A2i»=(0.5;1x(j,7;-]. Using this notation we obtain that the last term in (3) is bounded by

C sup (@, +bpm +Cppm ). Where
m2a2n

r G =E[IY T T M@O})M@BIM@BE)T ,
iji'el, j'el;

b =E[IL T X M@AFPM@F M @)1,
s iji'el j'el;

cm =E(IY Y X M(Ai"j)M(A )M(A‘}J)M(Aw)l] .
iji'el j'el;
We next show that each one of these terms tends to zero when 1 —oe, uniformly inm .

) By Davis inequality we obtain

SCE[L T (3 MALM@OIM@ALN"?

J'el; ii'el;
) =CE[ ¥ (IM(} )M(A,,,)zM(A‘,)Z)Zl‘”
j;j’eji i i'el;
SCEX( X M(A,’z'j)z)z Y sup M(A )zsupM(Aw )2]”2
] ‘el jel; ! @)
y SCE[ sup M ~M, *sup( T MQALD T sup M(a2)H"2
2,-231%1p" I el juel; i
SC(E[sup ( T M@B})HHI
J i;i'el.-
EL sup MM 1N NEC T sup MASDT
l2,~251S1p" | jied; t

where |p" | denotes the norm of p”, ie. Ip" | =max{I(s;.8;)~(Sisptja) !

| . .
{ i=0,...,p,, j=0,....q,).

By Doob’s inequality applied to the positive submartingale

( T M@} Fiy. j=0,...,q,). the fist fator of (4) is bounded by
i:i'el;

CE(Y M(0;y,1)-M (0"-'.1))2)2. and by Burkholder's inequality this is majorized by
i;i'el;

e — e . PR \ i




| . CEM {11 ). The second factor of (4) tends to zero as n —eo, by the continuity of M . Finally,

, E( T supM@IISEW T sup 1M(5,j00)-M (5,701 )7
k ];J'Elj 3 ];J’EJ,‘ s<1

<C EMY) ,
where the last bound is given by Lemma 2.2.

For b,,,, we can use the same arguments as before; we now analyze the last term.

—

(ii) By Ledoux’ version of Davis inequality for two-parameter discrete martingales (see (6]) we obtain

cam SC E[X );l Z, MA})M (AZ)M B )M BF) V2
iji'el; j'el;

=C E[T( T MQA})MAL)N T M@AZPM@B)H"?

. i.j i'el; j’e],-
SCEW sup  \M,~M,)DXT( T M MG
lz;=z41<1p" ! iji'el; Jj'eld;
SCE[ sup 1M, ~M, 1" sup T MQA}sup 3 M@BG)"
fzy~za!1<ip” | i J i'el; ' j,j’EJi
SCIE[ sup  |M,~M, 1*1}?
lzy=2z31<1p" |
{E[Tsup T MO (Elsup | T M@AZHM
i 1 oiel, bojued
SCIE[ sup M, ~M, 'YVEM{HN2,
lzy=z3i<ip™t

where the last bound is obtained, as in (i), by Lemma 2.2, and Doob’s and Burkholder inequalities.

O

In [9] it is shown that the quadratic variation of the martingale 1\? can be obtained as the L !-limit of
the sums
T M@LhM@aZ? .
QJ)el}
Our Proposition 2.3 provides another way of looking at the measure [M], and shows that, if M is of path

independent variation then [A;i] =[M]x[M].

Using the notation of Lemma 2.1, [li:l], =<M; >y % <M.y >, . The martingale property and the
techniques of martingale theory have played a basic role. Notice that it is not clear from the point of view

of real analysis if <M.>, % <M, >, exists, and defines a measure.
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We end this Section by giving some examples. The aim is to suggest what kind of relations of abso-

lute continuity may be expected for the different quadratic variations associated with a two-parameter con-

tinuous martingale M e m %,

Example 2.1. Fix 0<z;<z,<(s,t), and consider the strong martingale

M, = Rj P CDY
where {w,, 2z eRf } is a Brownian sheet. We obviously have [M ]([z,24])=0. On the other hand, for

a strong martingale M, = I &z )dw, we obuain

Ry

Ml = [ (| 6,000V ?dod t)dudv .

st v

It follows that, if z,=(x 1,y 1), 2,=(X2,y2) and 9=1|, , i,

X2¥2

[M((z,24)) = I I)’ 1Xdudv =y 11 (X=X )2~y 1) -

EI 4

Consequently [ATI] is not absolutely continuous with respect to [M ].

Example 2.2. Let {m,, ue[0,1]} be a continuous martingale, bounded in L4, m, =0, with respect 0
some filration {G,, u€[0,1]} that satisfies the usual conditions. For each (s,f)eT, define
Mg=mgp, and F ;=G . Itis easy tocheck that { F,, (s,t)€T } is an increasing family of O-fields
satisfying properties (F1) to (F4) of (2], and {My, ; Fq,(s,2)€T} is a continuous two-parameter
strong maningale_.

Moreover, M=0 and consequently [f:l].—-:O. However M #0 and the quadratic variation [M] is a
continuous measure which exists in the diagonal of T . In fact, let [A,-’;, i,j=0,...,D, ) be the dyadic

pantition of T, AJ=(s]s{\ Ix(t]'\t[4)

M1, =L~ lim };M(A{;)z

4
=L'~lim ¥ M@AM =L -lim T(mp —m?=<m> .
n i=j n i
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This last example shows that [M ] is not absolutely continuous with respect to [ATI] and neither with
respect to (M 1% [M]. The fact that the support of [M ] is a set of planar Lebesgue measure zero seems
to be the reason for this unexpected result. However we will see in Section 4 that [M ] % [M ] dominates

(M ] if the support of the latter measure is not "highly concentrated”.

3. One-Dimensional Results

In this Section we consider the measures induced by <M.>, (resp. <M ,>) and [M ], on verti-

cal (resp. horizontal) lines.
The relation [M];;, << <M >4, as. does not hold. In fact, consider the process defined by
anBsz'B,z, where {le, s€[0,1]} and {B,z, t€[0,11} are wo independent Brownian motions.

Let S=inf{s > %, le=0};S is a stopping time, and for any § >% P L <85 <s5}>0. Define a

2
two-parameter continuous martingale by M, =B ¢-B,%. Then:
<M; >4 = (BYhsdr, [Mly =<B'> psdt .
Therefore, for any fixed § > -;— and for any A€ B(R,), 1A [#0, f<MS.>d,=O and I[M]Sd, #0,
A A

with positive probability.

The following lemma is an extension of a well known result in martingale theory (cf. [5]).
Lemma3.l. LetMe mcz. M and [M ] have the same rectangles of constancy, almost surely.

Proof. It is very similar as in the one-parameter case. For the sake of completeness we will give the

details.

Since M is continuous it is enough to prove that for any fixed z 1529, a8,
{w, M (w)(A) =0, for any rectangle A < [2,,2,]})
= {w, [M](w)(A) =0, for any rectangle A  [2,2,]}.

One inclusion is trivial. In fact, if M(A)=0 for every AcC[z,,2,5], then

(M]([zy,25)) = lim M (AU )2=O, where the sum extends over an increasing sequence of grids of
n

(21,2 5] whose norm tends to zero, and the limit can be taken a.s.




::-*1
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To obtain the other inclusion, define D = {z2zy, zeT, [M1,=[M], }. D is a predictable
stopping set, and for any 22z | we have
E(f1p()dM)*=E [1p(a)d[M14=0 .
R, R,

Hence M (R, N D) =0, as., and this finishes the proof. D

An easy consequence of this lemma is the absolute continuity of <M.>, with respect to M)a

on the algebra generated by intervals.

Proposition 3.2. For any interval / for which j[M Js4: =0, it holds that J’<M 5. >4 =0,as.
I I

Proof. Assume that this property does not hold. That means, for a set F CQ, with P (F)>0 it is possi-

ble to find intervals /,, , such that [ [M ]sg (w)=0, but [ <M >4 (w)#0. Lemma 3.1 shows that this
lu

is not possible. Indeed, (we omit the dependence on w).

0= Mg =IMIA0s]X) ,
I

therefore M (A)=0, for any recangle AC([0,s]x/, in particlar M (A)=0 for any
A=[O,s]x[t;', t71 ], where {t?, j=1,...,q,) isapartiton of /. Hence <M >(/)=0. D

We do not know if <M, .> 4 <<[M 1,4, as., in general. However we will see at the end of this

Section that it is possible to prove this property for some classes of martingales.

The next Proposition shows that <M, .> ; is weakly absolute continuous with respect to [M ]4, in

the sense given by Definition 1.2.

Proposition 3.3. For any s€[0,1] and f : [0,1] =R, measurable and bounded function

1 1
P([ft)<M; >4 20, [f(t)M]y=0}=0. o)
0 0
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Proof. Fix r€[0,1]; the process {Ns'=<Ms.>, -[M], s€[0,1]} is a continuous martingale, and its

quadratic variation satisfies

<N'>, <[M], sup <M.>, .

s S[M]g Sup <Ms> 6)

Indeed, N can be obtained as the L L limit of a sequence ZM(A& M (A, j ). where the sum is extended
i

to the points (S;,? f ep®, (s; ,tj)<(s ,). This gives the martingale property. In order to prove (6) we

use Lemma 2.1 of [10]. Let p"=RTxR%, where R} and R% are panitions of [0,1] determined by

O=s,<s;< -+ <5, <l and O=t,<t;< - - <1, <I, respectively, whose norms tend to zero as

n —co, Then
<N'>, =P - lim (T MM B2,
n—poo j

where the 2 (resp. ) extends on indexes i (resp. j) such that 5; <5 (resp. 1<t ). Therefore
i J

<N'> <P - lim 3T MAHHE MAZISP ~ lim (TM (A;)))(sup IM (A5
e J mO iy L
< su@s <M. > M, .

From this result it easily follows that, if f:[0,1]9R, is a step function, the process
1 1
{N_{ = jf <M, >4 - Jf (2)M 14, (0,11} is a continuous martingale, and
0 0

1
<N/ >, s(zgf(z)w],,,,)O.;su;;<M,.>1 .
1 1

since {[f (1)<M,.>4#0, [f (1)[M15,=0) is included in the set {N#0, <N/ > =0}, the
0 0

property (5) holds if f is a step function.

Let f:[0,1]>R, be a measurable, bounded function, and cons‘der an increasing sequence of

positive  step  functions (f,) converging to f. Denote by A the set

1 1 1
([f (1)<M, >4, 20, [f (1)[M154=0}. On A, [f,(¢)[M]44=0. for any n20, and consequently
0 0 0

1
jf,, (t)<M; >4 =0, for any n 20 as. Therefore P (A )=0.
0

O

Let us now consider two-parameter martingales with respect to the following filtrations:
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{F,. 2€T} generated by a Brownian sheet {w,, zeT}

® (F,,zeT} a product filtration 7',=T}V?'y2, z=(x,y), where {Txl, x€[0,1]1} (resp.

(F2 y€[0,1]}) is generated by an n-dimensional (resp. m -dimensional) Brownian motion

(B,=(B,.,...,BM), s€[0,1]} (resp. (B, =B}, ..., B, t€[0,1]}), Band & inds pucic b
These processes will be called Brownian and bi-Brownian martingales, respectively.

Given two random finite measures [l and Vv on ([0,1], B([0,1]))) we can define on

B([0,1]) ® F two measures, }L and V, by

1 1
WF)=E([lrdw), VEF)=E([1pdv),
0 0

for any F € B([0,1]) ® F. Because of the right-continuity of the distribution functions of L and V, the

property <<V, a.s., is equivalent o L << V on B([0,1]) ® 7.

Denote by mf (resp. mBzé) the class of two-parameter Brownian (resp. bi-Brownian) martingales,

null on the axes and bounded in L 2.

Proposition 3.4. The property <M, .>, <<[M ]y, as. holds for martingales in the classes mw2 and

2.
mgpg.

Proof. We first recall the representation theorems.

0]

(i)

Wong-Zakai representation ([13]). Every M € m,? can be expressed as

My = [0,dw, + [[ wiz)dw,dw, ,
R, R, xRy
where @ is a measurable and adapted process such that £ f Q)zzdz <eo, forany 2, € Rf ,and Y is
R,
a measurable and ¥y, - adapted process, null except on the set D ={(z,z")e Rf, 2=(x.y),

2'=(x"y"), x<x’, y2y’}, such that £ f f W(z,2")%dzdz "<eo, forany z,€ R2.
ROR,,

EveryMe mgzg‘ can be represented as

n m . a .
M,=% % h,-j(x.y)dB;dBy/ )
i=l j=1
where h;; are measurable and adapted processes such that E( j hijz(x ,y ddxdy )<ee, for any

2
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z,€ R 2 (see [3)).

Let M & m,2. The quadratic variation of M is [M 1, = [ g (u ,v)dud v, with
Ru

gy = 0wV + [ Wix . viuy)dddy
RIV
t

and <M; >, = Ih (s.,v)d v, where
0

h(s,v)= f(q)(u V) + f y(u,v;z ')dw,')zdu .
0 R

1
Let F be a set of B([0,1]) & F such that E(IIF(W #)[M 1,4, )=0: we have, using Fubini’s
0

theorem,

1 s
([ Je w.t)du)dP)dt =0
0F 0

where F, denotes the section of F through t. Therefore, for all ¢, a.e., such that P (F;)>0, w - as.on

F, we have O(u 2 )=0and y(x ,t;u,y )=0, for all u € [0,1), a.e. and for all (x .y )ER,; ,ae.

The conditions on f can be expressed in an altemative way, using again Fubini's theorem: For all £,
ae., suwch that P {F,)>0, w - as. on F, we have y(x,t;u,y)=0, for all xe[0,5] ae. and for all

(u,y)e[x,s1x[0,t], ae. Then,
1 s
[dP <M, >, = [dr ! dP ([(§(u.0) + [ yu b;z")dw, ) du)
F 0 F o R,
1 s st
= [de [dP ([(o(u.t) + [ [wu b;2")dw, ) du
0 F 0 u0

3 st
= [dt J dP (@) + [ [wix £:2")dw, )dx=0 ,
0 F 0 x0

due to the local property of stochastic integrals.

The proof for M emazp‘ follows the same lines. If we restrict ourselves to the case n=m=1 we

have
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Mg = (Jh(ut)2du)dr
0

s
<M. >4 = (fh(u,0)dB, ) dr .
0

The simple form of this measure makes computations easier than in the Brownian case.

O

4. Two-Dimensional Results

The main purpose of this Section is to analyze in what cases [M ] is dominated by [A:i]. Under some
hypotheses on [M ] it is proved that the class of path independent variation martingales satisfy the property
M ]<<[1‘-’;]. a.s. The measure [M ] % [M ] introduced in Section 2 plays an important role. In several

cases it dominates [A?]. but we do not know if they are equivalent.

In Section 2 we have given an example of strong martingale for which [M ] is not absolutely con-
tinuous with respect to [A?] a.s. In this example [M ] has a special feature: It lives on a subset of T of
zero planar Lebesgue measure. We conjecture that with some non-degeneracy hypothesis on [M], it
should be absolutely continuous with respect to [ATI]. The next proposition is a partial result in this direc-

tion.

Proposition 4.1. Assume that [M ] is absolutely continuous with respect to the product of its marginals,

as., then [M]<[M]%[M], as.
Proof. Denote by Jt;, {=1,2 the marginals corresponding to the measure induced by [M ], and let f bea

d(M]

. We have
dupdp,

version of

v u
(M 1% M D) = [([f @D ONF (VIR (@O (du )y (dv) -
R, 0 0
Assume that (M ]%M1)A)=0, for some AeB(T), then

t s
([f (s W@ VIS (2 Dy (du ))=0, for every (s 1 )E A, WyXy ae. Define
0 0

s ?
A=((s.)eA, [f (.0 (du)=0), A={(s.0)eA, [f (s Vuydv)=0),
0 ¢

N=(A,UA )" NA.

S WPy N - - . .
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Notice that (bXH2)(N )=0, and if (5,1)€ A |, for any 5'<s such that (s",t )€ A we have (s',£)€A,
(and also an analogue property for A ;). Using Fubini’s theorem we obtain [M (A |)=[M 1(A 2)=0, and

consequently [M ](A )=0.
O

The hypothesis on [M ] in the preceding Proposition is obviously satisfied if for any A € B(T ) such
that [M ](A )#0, there exists a rectangle R A such that [M J(R )=0.

Corollary 4.2. LetMe m: be a path independent martingale satisfying the hypothesis of Proposition 4.1,
then [M ] <<[M].

Proof. Use Proposition 2.3. D

Notice that we cannot expect [M ] % [M ]<<[M ], a.s. Example 2.1 provides a counterexample.

The second part of this Section gives a partial result on the absolute continuity of [A?] with respect to

M]x(M].

Lemma 4.3. Let f: T —R be a bounded function, and F: T —R a continuous distribution function.
We have

im | % f(s;.8)[F (ADF (AD~(F % F)(A;)]1=0 .
T Ggelr

Proof. In order to simplify the notations we take z=1. Let m2n; given a point (s; o) )e p”, we define

I7=1G"07), 019 p™ N [(ishy), (Siv1tjs))). By Lemma 2.1, we have
| f (50 )IF (A)F (A7) = (F % F X411
iJ

= 'zf(-‘n’,‘)[F(A;})F(Ag)- lim Y F(A},-:)F(Aﬁj,)]l
b MR ely
Ssup (IZf;[( T F@AMN T FAIN~- T FAYIF@EN)

ij el j'el; G’ el
where f; =f (s;,1;), and we have used the notations of Proposition 2.3.

)]

Define Ai}i'j' and A‘%"'j' by Ail'j'=A"l'j (V A"}"'j' and Aiz'j'=A5'UA‘%‘-'j'. respectively. Taking

account of this decomposition we obtain that (7) is bounded by S"z’,’. (Otpp +an +Ymn ), where
m
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Upn = 135 T FQ@EIF @AM,

Lo eld

Brn=1Zfy T F(A,,,, VF(AZ)
iy Gyely

Ymn=12fij p F(AUU)F(AUU)I .
ij o @jely

We next prove that each one of these terms tends to zero when 72 —oo, uniformly in m

(o N S(ES?PZF(AUU ’) ZF(A},].)
<C ZF(A,J)F(AU)<C sup IF(z)~F(z)IF(z) - 0.
ij lz9=z, 1S 1p" L R —poe
In an analogue way, sup B,,, — O. Finally
m2n n—ee

Ynn <C ZZS“PF(AW f] ) ZF(A‘/‘ J

ijJ
SCY sup lF(zz)—F(zl)IF(z) - 0.
ij fz9-2,1S1p" | R —yee D

Proposition 4.4. Assume that <M, >, and <M, >, are absolutely continuous, a.s., with respect to
[M );4 and [M ] 4. and that there exist versions of their Radon-Nykodim derivatives 9, (s, ), 9o(s ,¢)

which are jointly continuous, a.s. Then [ATI] «<[M]%[M],as., and

Ml, = [0,(x.y)02(x.y)d(M]* [MD)(x.y) ,as.
Rl

Proof. Take z=(1,1). By Proposition 2.3 and the hypothesis on absolute continuity we have

[Mh 1 -hm pXCI >4 <M:.-->r,-)(<M'r,->:.-.l"<M~r,->:.v)

b
‘,.[ Siel

= lim z< J 01651, V)M 15,4, j 020 )M 1) @®
= 11:n Z%(S‘ o )0o(S; 52 )[MI(A.,)[M]( .
where the last equality follows from the continuity of ¢;,9, and [M ] in its two variables. Using Lemma
4.3, we obtain that (8) is equal to

li’r.n 2010510020 1 )M ] % [M(A;))
i
= RJ(OI'%)(X X (M]%[MD(x.y) .
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5. Application to Local Time

We have pointed out in the Introduction that one of the motivations of this work has been the prob-
lem of finding out what measure is the most "natural” for the purpose of defining local time for two-

parameter continuous martingales. This Section is devoted to giving an answer to this question.

We start introducing some terminology. Let (x,, £€T } be a real valued stochastic process defined

on a probability space (€2, F,P ). Let T be a C-field on T, and T a finite (possibly random) measure.

Following [4], a map L : QXRXT—R is called a local time for x with respect to T if the follow-

ing conditions hold:
@) For each A € T, the function (w ,x)—=L (w x,A) is F ® B(R) measurable.
(i) For every (w ,x )€ xR, the function A =L (w x ,A ) is a finite measure on 7.
(iii) For almost every w, we have
l{f (L (wx A)dx = [f (x,)t(ds) , ©)
for each f : R— R bounded, Borel function, andAevery AeT.

In the following we will omit the dependence of L on w/, for the sake of simplicity.

Lemma 5.1. For almost every w , we have

[ o0 u)L (x.du)dx = [ oCx, u)t(du) (10)
RxT T

for any ¢: Rx7T >R measurable and bounded function,

Proof. Let O(x ,u)=f (x)1, (u), where f : R—R is measurable and bounded, and A € T; then

Jf @)l uyedu) = [ (0L (x A)dx
T R
= | £ )L (xdu)dx

RxT

The general case follows by a monotone class argument. D

Remarks.

(1)  The equality (10) also holds for ¢: RXT — R measurable and positive.
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(2) The property (9) means that the distribution function of L (x,") is the density, with respect to the

Lebesgue measure of the T-measure of sojourn time of the process X on Borel sets.

The following Proposition is an easy consequence of the definition of local time.

Lemma 5.2. Let T;,T; be two finite measures on the parameter space (T',7). Assume that the local time

of x with respect to T, exists, and denote it by L 5, then we have:

dt,
T, <1 as., and F(u) =d(u) ae. if and only if, for any x a.e. (with respect to the Lebesgue meas-
2

ure on R) there exist the local time of x with respect 10 Ty,L , and

Ly(x A)= [0u)Ly(x du) as. an
A

Proof. By Lemma 5.1 we have
Jow)tadu)y = [ w)Lyx du)dx as.
T RxT

In order to see that (11) defines the local time of X with respect 10 T;, take f : R—R measurable

and bcunded. Then
[foOL (A = [ f 0L (x du)dx
R RxA
= [f (x,)0()t,(du) by Lemma 5.1
A

= [f (x,)T(du) as.
A
Reciprocally,

1(A) = L (x A)dx = [ o)L o(x du)dx = [o(u)ty(du) as.
R RxA A
and therefore T; << T3, a.s.
O

For any martingale M <Emc4 there are two non-trivial measures, [M ] and [Aq]. associated in a
natural way (see e.g. [2], [3], [8] ). Using an [to’s formula for two-parameter continuous martingales,
Nualart has proved the existence of a local time for M with respect to [A?]. On the other hand there exist
several results on the existence of a local time for M with respect to [M ] (see e.g. (12], [1] for the

Brownian sheet, and [11] for a certain class of martingales).
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Example 2.2. shows the existence of a non-zero continuous martingale such that ATIEO In view of
this example it seems that [ATI] may not be a "good” measure in order to describe the time expended by M

on a certain set. Looking at example 2.1., an analogue conclusion can be obtained for the measure [M ].

These considerations lead us to propose [M ]+[Ajf] as a natural measure to define the local time of

M . We will give the precise definition, and discuss the different role of [M ] and [A}].

Theorem 2.1 of [9] (see also [3]) establishes the following Ito formula: If f : RoR isa C 4 Class

function, and M € mc4, then for any (5, )€ RE we have

£ (Ma)~f ©) = [£ MM, + [ £ (M)A, + 5 [ (M)A <M >,
R” Rl 0
4
+ 2 [f M)A <M, >,= = [ £/ MM, - [ £7(M,)d 1M ), (12)
0 R,, Ry
1 —~
;Rj VMdm,

By means of this formula the existence of a process {L(x,5,t), xeR, (s,t)e Rf} can be proved,

such that it is jointly continuous in (x ,5 ,¢ ), increasing in the sense of the measure, and for almost every w

[f)dM, = [Lyxos.) f(x)dx
(13)
R, R
for all bounded and Borel functions f , and every (5,2 )€ RE (See theorem 3.2 of [9]).
The idea of the proof is the same as in the one-parameter case: Apply (12) to a function g ., of class

1
C%and compact support, such that it is an approximation of -E— 1[,‘ x +E]('). It can be checked that

.1 ~
Lyx.s.t)=lim — [ 1 e, coee) (M),
e—0 € R,,
exists, in the sense of the convergence in probability, and that (13) is satisfied.
In the terminology introduced at the beginning of the Section L | is the distribution function of the
local time of M with respect to [A-';].

Notice that, on the set {w, [A?],, (w)=0}, L(x,s,t) should be zero. Since there exist mar-
tingales such that [A"?]EO. but [M ]#0, this shows that the time spent by M on a certain set may be not

detected by the measure [A7I], although it can be detected by [M ]. Therefore, it is important 10 have a
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local time with respect to (M ], say L 2. and a "good” combination of L | and L, will provide a reasonable

measure of the sojourn time of the martingale on Borel sets.

Unfortunately, we do not have a general result on the existence of L, forany M € mc"'. however we
know that it exists and has favorable properties for several classes of martingales (cf. references given

before).

Fix (s,t)€T. On the set {w, [ATI},,(W)=O}, L ,(x,u,v),(u,v)ER, can be obtained from
Ito’s formula using the same approach of [9]. Indeed, using Lemma 3.1 and the local property of the sto-
chastic integral, we get from (12)

U Mg )-f (O)]l{[lt?],=0) = { If'(Mz)dM, + —12~ '[f"(Mu)d<M., >,
R. 0
¢
+_12-If”(M;y)d<Ms.>y —% If"(Mz)d[M]z} . 1([[{1.:0} .
0 R,

Fix £>0 and x € R and consider a C 2-function with compact support such that g u is an approximation

of —é— I[x x+£)(")- Then it can be shown that, in the sense of the convergence in probability,

o1 . ,
llm—(j 1(xSM,Sz+€}d[M]z)'l{{A?},,=0)=L2(x S ,t)e:ustsand
e—=0 € R,

Ly(x,s.0)={=2Mg=x)* +2(=x)" +2 [ 114y 5. ;dM,
Ry
t

s
.1
+:1_r:10 —e-[gl‘xwugﬁ}d<M, >u+(,,)‘l{xeM,,Sx+£)d<Ms~>y]} : l{lm'l:o) (14)

= (=2(My=x )" +2=2)42 [ 1y, 5 @M, +L D05 DAL DY 5.0} i, =01
3

where LV(x 1), L(Z)(y ,$,°) are the local times of the one-parameter martingales M ,={M,, 520}

and M, =(M,,, £20}, respectively.

Moreover, L; satisfies the "density of occupation” formula

(Jf M, )dM1,) - Lz, =0 = (JL2 (x5 .0f (0)dx) - i, =0) @S-
. R
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Definition 5.3. The local time of a martingale M emc4 is the process {L(x,5.,t), xeR, (s,t)eT}
given by

LG,s.t)=[Ly(xs.0)+Lo(x,s,0)] Lm0y + Lalx s p)
Notice that L is a local time with respect to the measure T={M ]+[1l71].

To summarize:

(1 Ml [A?], a.s., there exists the local time L with respect to [M ]+[1|-/?], and it can be expressed

in terms of L | (cf. Lemma 5.2).

(2) Assume [M]<k [ATI], a.s. On the set {[ATI] =0}, L always exists and is given by (14). On the set
{[ATI]“ >0}, we know that L exists for a class of martingales on mc4 (see [11]), but we do not

know about its existence in general.

We end this Section with an application of local time to an example of two-parameter continuous

martingale for which the measures [M ], [1\}] and [M ] %« [M ] are equivalent, a.s.

Example. Letm={m,, s20}, n={n,, 120} be two independent continuous martingales, bounded in
L2, with respect to some filtrations { F sl, s20), {F ,2, t20} respectively. Consider the martingale
M=(M,=mn,, 5,620} with respect to the product filration ¥ =FlV F2 Denoe by
LD(x 5), L(z)(y ,t) the local times of m and n with respect to their respective quadratic variations

<m>,<n>. We have [M] = [M], as.

Indeed, forany A€ B (R+2 )

(M)A) = [L4Gs.0mPnld<m> d<n>,
R?
= j(f 14 (s.0)m2d<m>)n*d <n>,

R_R
= [( [ 14600’ D0x ds)dx)ntd<n>, , by (10)
R.RxR.

= | (146 exL O ds)LD(y de)dxdy .
R*R?

By analogue computations
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MIA) = [ [146.0LD0.ds )LDy de)dxdy
R*R?
and consequently the equivalence between [M ] and [A:i]. The equivalence between [A?] and [M ] % [M]

is immediate.
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